GGSIPU mathmatics 2009

1. If Az $_1$, Bz $_2$, Cz $_3$ and Pz represents complex numbers such that

$$|z_1 - z| = |z_2 - z| = |z_3 - z|$$
, then A,B,C lies on

- a A straight line
- b A circle
- c A parabola
- d An ellipse

2. if the complex numbers z_1, z_2 and origin form vertices of an equilateral triangle, then the value of $z_1^2 + z_2^2$

- a z_1z_2 b z_1+z_2
- c 2z₁z₂ d z ₁-z₂

3. Three numbers form an increasing GP.If the middle term is doubled, then the new numbers are in AP.The common ratio of the GP will be

- a 2 $\sqrt{3}$ b 2 $\pm \sqrt{3}$
- c 3 $\sqrt{2}$ d 3 $+\sqrt{2}$

4. If the equations $ax^2+2cx+b=0$ and $ax^2+2bx+c=0$, $b\neq c$ have a common root, then the value of a+4b+4c will be

- a -2 b 1
- c -1 d None of these

5. If one root of $ax^2+bx+c=0$ as twice the other root, then

- $a b^{2} = 9ac b 2b^{2} = 9ac$
- $c 2b^2 = ac d b^2 = ac$

6. The number of ways of distributing 8 distinct toys among 5 children will be

- a 55⁸ b 8⁵
- c 8_{p_5} d 40

7. The value of C_1 – 2. C_2 + 3. C_3 – 4. C_4 + Where C_r = n_{C_T} will be

- a -1 b 1
- c 0 d None of these

8. If the equations

$$2x-y+2z = 2$$

$$x-2y+z = -4$$

$$x+y+\lambda z = 4$$

have no solution, then the value of λ will be

- a 1 b 2
- c:) 3 (d) -4
- 9. If $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$, then the value of α , if $A^2 = B$ will be
 - a 4 b 3
 - c 5 d None of these
- 10. The probability that at least one of the events A and B occurs is 0.6. If A and B occur simultaneously with probability 0.2, then P \overline{A}) + P(\overline{B}) will be
 - a 1.1 b 1.3 c 1.2 d 0.8
- 11. If sinsin $-\frac{1}{5} + \cos^{-1} x = 1$, then x is
 - a $\frac{1}{5}$ b $\frac{2}{5}$
 - c $\frac{3}{5}$ (d) $\frac{\pi}{2}$
- 12. The value of $an\!\left[cos^{-1}\left(\!\frac{4}{5}\right) + tan^{-1}\left(\!\frac{2}{3}\right)\!\right]$ will be
 - a $\frac{6}{11}$ b $\frac{6}{17}$
 - c $\frac{11}{6}$ dl) $\frac{17}{6}$
- 13. In a \triangle ABC, if $\tan \frac{A}{2} = \frac{5}{6}$ and $\tan \frac{C}{2} = \frac{2}{5}$, then the sides a,b,c are in

d None of these

14. The value of

$$\cos\left(\frac{\pi}{5}\right)\cos\left(\frac{2\pi}{5}\right)\cos\left(\frac{4\pi}{5}\right)\cos\left(\frac{8\pi}{5}\right)$$
 will be

a
$$\frac{1}{16}$$
 b $-\frac{1}{16}$

$$-\frac{1}{16}$$

c 0 d
$$\frac{1}{2}$$

15. The distance between the lines 3x+8y = 15 will be

a
$$\frac{3}{2}$$
 b $\frac{3}{8}$

$$b = \frac{3}{8}$$

c
$$\frac{3}{10}$$
 d 6

16. If the algebraic sum of the perpendicular distances from the points 2,0,0,2 and 1,1 variable line is zero ,then the line will pass through the fixed point

b a straight line

d 2,1

17. The locus of the point of intersection of the lines x $\cos \alpha$ + y $\sin \alpha$ = p and x $\sin \alpha$ - y $\cos \alpha$ = q α is a variable will be

a a circle b a straight line

c a parabola d an ellipse

18. The locus of the mid points of the chords of a circle which subtend a right angle at its centre equation of the circle is $x^2+y^2=a^2$ will be

$$a x^{2}+y^{2}=3a^{2}$$

a x
$$^{2}+y^{2}=3a^{2}$$
 b x $^{2}+y^{2}=\frac{a^{2}}{3}$

$$c 2x^{2}+y^{2}=a^{2} c 4x^{2}+y^{2}=a^{2}$$

c
$$4x^{2}+v^{2}=a$$

19. If the line 3x-2y+p = 0 is normal to the circle $x^2+y^2 = 2x-4y-1$, then p will be

20. If the two circles $x^2+y^2-10x+16=0$ intersect at two ral points, then

- a 1<r<7 b 3<r<10
- c 2<r<9 d 2<r<8

21. The equation of the tangent to the parabolas $y^2 = 2x$ and $x^2 = 16y$ will be

- a x+y+2=0 b x -3y+1=0
- c x+2y -2 = 0 d x+2y+2 = 0

22. The equation of the tangent to the parabola $y^2 = 8x$, which is parallel to the line 2x-y+7=0, will be

- a y=x+1 b y=2x+1
- b y = 3x+1 d y = 4x+1

23. The distance of a point on ellipse $\frac{x^2}{6} + \frac{y^2}{2} = 1$ from its centre is 2. The eccentric is $\sqrt{2}$ angle of the point will be

- a $\frac{\pi}{4}$ or $\frac{\pi}{3}$ b $\frac{\pi}{3}$ or $\frac{3\pi}{5}$
- c $\frac{\pi}{4}$ or $\frac{3\pi}{4}$ d None of these

24. The distance between the foci of a hyperbola is 16 and its eccentricity is $\sqrt{2}$.Its equation will be

- a $x^2-y^2=1$ b $x^2-y^2=20$
- $c x^{2}-y^{2}=4 d x^{2}-y^{2}=32$

25. The vector of magnitude 9 unit perpencular to the vectors $4\hat{i} - \hat{j} + 3\hat{k}$ and $-2\hat{i} + \hat{j} - 2\hat{k}$ will be

- a 3 $\hat{i} + 6\hat{j} 6\hat{k}$ b $-3\hat{i} + 6\hat{j} + 6\hat{k}$
- | dk 3 $R\hat{t}$ $H\hat{t}\hat{f}$ + $H\hat{t}\hat{f}$ + $H\hat{t}$ + $H\hat{t}$ + $H\hat{t}$ + $H\hat{t}$

26. If $\vec{x} = \vec{x} \times \vec{b} \neq \vec{b}$, then $\vec{a} - \vec{c}$ will be equal to

- ak b bk ii
- ck ! d k(12+1)

27. The value of of ' λ ' so that the vectors $\hat{\imath}$ -3 $\hat{\jmath}$ + \hat{k} , $2\hat{\imath}$ + λ $\hat{\jmath}$ + \hat{k} and $3\hat{\imath}$ + $\hat{\jmath}$ - $2\hat{k}$ are coplanar, will be

$$c - \frac{1}{2}$$
 d -4

28. The line passing through the point -1, 2, 3 and perpendicular to the plane x -2y+3z+5 = 0 will be

a
$$\frac{x+1}{1} = \frac{y-2}{3} = \frac{z-3}{5}$$

b
$$\frac{x+1}{1} = \frac{y-2}{3} = \frac{z+3}{3}$$

$$c \qquad \frac{x+1}{1} = \frac{y-2}{3} = \frac{x-3}{2}$$

d
$$\frac{x+1}{1} = \frac{y-2}{-2} \approx \frac{z-3}{3}$$

29. The value of k, if the line $\frac{x-4}{1} = \frac{y-2}{1} = \frac{z-k}{1}$ lies on the plane 2x-4y+z = 7, will be

30. If the line of intersection of the planes 2x+3y+z=1 and x+3y+2z = 2makes angle α with positive direction of x-axis , then $\cos\alpha$ will be equal to

a
$$\frac{1}{\sqrt{2}}$$
 b $\frac{1}{\sqrt{5}}$

c
$$\frac{1}{\sqrt{7}}$$
 (d) $\frac{1}{\sqrt{3}}$

31. If y= $\tan^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}$, then $\frac{dy}{dx}$ will be

a sis x cos x b
$$\frac{\pi}{2}$$

c
$$\frac{1}{2}$$
 (d) $\frac{1}{1+\cos^2 x}$

32. The value of $\lim_{x\to 1} (1-x) \cdot \tan\left(\frac{\pi x}{2}\right)$ will be

a
$$\frac{\pi}{2}$$
 b $\frac{2}{\pi}$

33. Let $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 + 2x - 3}, & x = 1 \\ k, & x = 1 \end{cases}$ If f(x) is intinuous at x = 1, then the value of k will be

a 1 b
$$\frac{1}{2}$$
 c -1 d $\frac{1}{2}$

- 34. The point on the curve $y=2x^2-4x+5$, at which the tengent is parallel to x-axis, will be
 - a 1,3
- b -1,3
 - c 1, -3 d -1,-3
- 35. The point on $x^2 = 2y$, which is closest to the point 0,5 will be
 - a 2 $\overline{2}$, 0 b 0,0
 - c 2,2 d None of these
- 36. The interval, in which the function $f(x = x^2e^{-x})$ is an increasing function, will be
 - a $-\infty$, ∞ b -2,0
- - c 2, ∞) (d) (0,2
- 37. Let $f(x = \begin{cases} x^n \cdot sin(\frac{1}{x}), & x = 0 \\ 0, & x = 0 \end{cases}$ Then, f(x) differentiable at x = 0, if
 - $a \ n \ \in \textbf{0,1} \qquad b \ n \qquad \in \textbf{1,2}$
 - $c n \in 1, \infty \quad d n \in -\infty, \infty$
- 38. In which interval the function $f(x = \sqrt{log_{10}(\frac{5x-x^2}{4})})$ is defined?
 - a [1,4] b [0,5

 - c 0,1 d $-1, \infty$
- 39. The function $f(x = \sin x + \cos x)$ will be
 - a an even function b an odd function
- - c a constarant function (None of these
- 40. The value of $\frac{\cos \sqrt{x}}{\sqrt{x}}$ dx will be
 - a 2sin \overline{x} + c b 2cics \overline{x} + c

- c $2\sin x + c$ d($\sqrt{2}\sin x + c$
- 41. The valueb of $\frac{\sqrt{3}}{2} \frac{\sqrt{x}}{5-x+\sqrt{x}} dx$ will be
 - a $\frac{\sqrt{3}}{2}$ b $\frac{1}{\sqrt{2}}$

$$c = \frac{1}{2}$$

42. The area common to the curves $y^2 = x$ and $x^2 = y$ will be

a 11q unit b
$$\frac{2}{3}$$
 sq unit

$$c = \frac{1}{4}$$
 sq unit

c
$$\frac{1}{4}$$
 sq unit d $\frac{1}{3}$ sq unit

43. If x+y 2; x 0; y 0, then the point, at which the maximum value of 3x+2y is attained, will be

a 0,0 b
$$(\frac{1}{2},\frac{1}{2})$$

44. The maximum value of p = 6x+8y, if 2x+y = 30; x+2y = 24, x = 0, y = 0, will be

b 120

c 96

d 240

45. regression of saving s of a family on income y may be expressed as $s = a + \frac{y}{m}$, where a and m are constants. In a random sample of 100 families the variance of saving is one quarter of the variance of incomes and the correlation coefficient is found to be 0.8, the value of m is

b 1.25

c 0.25 d(d) he of these

46. The integral $\frac{10}{1}x^3$ dx is approximately evaluated by Trapezoidal rule $\frac{10}{1}x^3 = 3\left[\frac{1+10^3}{2} + \alpha\right]$

 7^3 for n=3, then the value of α is

a 4 ³ b 4 ²

c 5 ³ d None of these

47. The solution of the equation $\log_7 \log_5 \sqrt{x^2 + 5 + x} = 0$ is

$$a x = -2 b x = 2$$

$$b x = 2$$

$$cx=4$$

dx=5

48. A balloon is coming down at the arate of 4m/min and its angle of elevation is 45° from a point on the ground which has been reduced to 30°, after 10 min. Balloon will be on the ground at a distance of how many meters from the observer?

 $\overline{3}$ m

- 3m d None of these c 103+
- 49. A fair coin is tossed n times. If the probability of getting 7 heads is equal to the probability of getting 9 heads, then the value of n will be
 - a 8 c 13
 - d None of these c 15
- 50. The probabilities of solving a equation by three students are $\frac{1}{2'4'6}$ respectively. What is the probability. What is the probability that the equation is solved?
- a $\frac{35}{48}$ b $\frac{1}{48}$ c $\frac{11}{16}$ d $\frac{2}{11}$